Cumulants, lattice paths, and orthogonal polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O ct 2 00 1 CUMULANTS , LATTICE PATHS , AND ORTHOGONAL POLYNOMIALS

A formula expressing free cumulants in terms of the Jacobi parameters of the corresponding orthogonal polynomials is derived. It combines Flajolet's theory of continued fractions and Lagrange inversion. For the converse we discuss Gessel-Viennot theory to express Hankel determinants in terms of various cumulants.

متن کامل

Lattice Paths and Faber Polynomials

The rth Faber polynomial of the Laurent series f(t) = t + f0 + f1/t + f2/t + · · · is the unique polynomial Fr(u) of degree r in u such that Fr(f) = tr + negative powers of t. We apply Faber polynomials, which were originally used to study univalent functions, to lattice path enumeration.

متن کامل

Lattice Paths and Kazhdan-lusztig Polynomials

In their fundamental paper [18] Kazhdan and Lusztig defined, for every Coxeter group W , a family of polynomials, indexed by pairs of elements of W , which have become known as the Kazhdan-Lusztig polynomials of W (see, e.g., [17], Chap. 7). These polynomials are intimately related to the Bruhat order of W and to the geometry of Schubert varieties, and have proven to be of fundamental importanc...

متن کامل

Orthogonal polynomials and the finite Toda lattice

The choice of a finitely supported distribution is viewed as a degenerate bilinear form on the polynomials in the spectral parameter z and the matrix representing multiplication by z in terms of an orthogonal basis is constructed. It is then shown that the same induced time dependence for finitely supported distributions which gives the ith KP flow under the dual isomorphism induces the ith flo...

متن کامل

Counting Lattice Paths by Narayana Polynomials

Let d(n) count the lattice paths from (0, 0) to (n, n) using the steps (0,1), (1,0), and (1,1). Let e(n) count the lattice paths from (0, 0) to (n, n) with permitted steps from the step set N × N − {(0, 0)}, where N denotes the nonnegative integers. We give a bijective proof of the identity e(n) = 2n−1d(n) for n ≥ 1. In giving perspective for our proof, we consider bijections between sets of la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2003

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(02)00834-8